

Fermilab

Transverse Beam Heating Distributions

Fred Mills 2/27/86

Transverse Beam Heating Distributions

F. E. Mills

A beam is heated in one dimension with a dipole kicker which deflects the beam by an angle $\theta(t)$, at a location where the lattice functions are (α,β,γ) . θ has a power spectrum $P(\omega)$ in the sense that θ^2 represents power. We will use variables L, γ defined as

$$I = (\gamma x^2 + 2\alpha x x' + \beta x'^2)/2$$

$$tan \gamma = \alpha + \beta x'/x$$
1.

When a particle is deflected by an angle θ , I and γ change by

$$\delta I = (2I\beta)^{1/2} \sin \theta + \beta \theta^2 / 2$$

$$\delta Y = (2\beta/I)^{1/2} \cos \theta \qquad 2.$$

Although γ will diffuse, we are only interested in amplitudes I. To use the Fokker-Planck (FP) equation, we need to calculate the sum over many revolutions of the 6I's (= Δ I) for a particle, and find those parts of Δ I and $(\Delta I)^2$ which are proportional to time. The particle, which has (angular) revolution frequency ω_0 and betatron frequency $\omega_\beta = \omega_0 \nu$ passes the kicker at times t_Q with betatron phase γ_0 where

$$t_{\varrho} = t_{o} + 2\pi \ell/\omega_{o}$$

$$\gamma_{\varrho} = \gamma_{o} + \omega_{e}t_{\varrho}$$
3.

The final values of ΔI and $(\Delta I)^2$ are then averaged over t_o and γ_o . We find;

$$\begin{split} \Delta I/T &= \beta \omega_0 \int P(\omega) d\omega/2\pi \equiv k_w \\ (\Delta I)^2/T &= \beta I \omega_0^2 \sum_{p=0}^{\infty} P(|p\omega_0 \pm \omega_g|)/2\pi \equiv 2kI \end{split} \qquad 4. \end{split}$$

The FP equation is

$$\frac{\partial f}{\partial t} + \frac{\partial \Phi}{\partial l} = 0$$

$$\Phi = k_w f - k \frac{\partial f}{\partial l} = 0$$
5.

For narrow band heating, the first term can be neglected, since its contribution to FP is of order BW/f_0 compared to that of the second term. For wideband heating $BW>f_0$, it changes the nature of the diffusion, and the subsequent distribution. Eq. 5 admits solutions, where C is a constant,

$$f = Ce^{-\alpha t} J_0(2\sqrt{(\alpha I/k)})$$
 6.

Now f must be 0 at, as well as beyond, the aperture limit I_m ; otherwise its infinite derivative there would imply infinite flux. Then $J_0(2\sqrt{(\alpha I_m/k)}) = 0$, and the allowed values of α are

$$\alpha_{i} = k j_{i}^{2} / 4 l_{m}$$
 7.

Here j_i is the $i\underline{th}$ zero of J_0 . Since the set of functions $J_0(j_ix)$ is complete in the interval (0,1), the initial distribution can be expressed as a series of $J_0(j_i\sqrt{(I/I_m)})$. Each term then decays with its own lapse rate α_i . For our purposes, we note that all terms above i=1 decay very rapidly compared to i=1, so the distribution quickly approaches $J_0(j_1\sqrt{(I/I_m)})$.

What one measures with the scraper is the integral distribution F(y) as a function of y, where $y=\sqrt{(1\beta_S)}$, and β_S is the value at the scraper. F(y) is given by

$$F(y) = yJ_1(j_1y/y_m)/[y_mJ_1(j_1)]$$
 8.

This can be compared directly to the plots on the Lexidata.